Study on Performance of Concrete Reinforced with Graphene: Review

Shivprasad Gujrati¹; Rahul Sharma²

¹M. Tech Scholar, Department of Civil Engineering; ²Assistant Professor Department of Civil Engineering, Prashanti Institute of Technology & Science, Ujjain (M.P.) India

Email ids: shirbiddu76@gmail.com; rahulcivil.sharma@gmail.com;

ABSTRACT

Graphene oxide (GO), a two-dimensional nanomaterial, has emerged as a promising admixture to enhance the mechanical and durability properties of cement composites and concrete structures. This review synthesizes experimental findings and literature discussed in the attached research, highlighting GO's role in improving compressive, flexural, and tensile strength, alongside durability and workability. Key studies demonstrate that even small dosages of GO (0.03–0.1% by weight of cement) lead to significant improvements: compressive strength rises up to 52%, flexural strength up to 21%, and split tensile strength up to 40%, compared to conventional mixes. These enhancements are attributed to GO-driven microstructural refinements, accelerated cement hydration, decreased porosity, and improved interfacial bonding between aggregate and matrix. Notably, GO also contributes to reduced water permeability and corrosion, prolonging service life and reducing maintenance.

The results indicate that aggregate type also influences GO's effectiveness; granite aggregates tend to yield the highest performance improvements, followed by quartzite and sandstone. Graphene oxide's large specific surface area increases water absorption and stiffness, lowering workability but promoting more robust hardened properties. Furthermore, GO's environmental advantages—lower cement requirements and potential incorporation of industrial byproducts—align with global sustainability goals. Despite these advances, challenges remain in optimizing GO concentrations, dispersion techniques, and understanding long-term durability in varied environmental conditions. Research gaps include insufficient field data and limited comparative studies with other nanomaterials. This review concludes that GO-admixed

concrete represents a transformative advance in construction material science, with the potential to revolutionize both performance and sustainability in infrastructure development. Continued interdisciplinary research is needed to fully realize its technical and environmental benefits, optimize mix designs for varied aggregate sources, and address unresolved issues related to large-scale production and real-world application.

Keywords: Graphene oxide, Ultra-high-performance concrete, Mechanical properties, coarse aggregates, Cement composites, and Admixtures

INTRODUCTION

Concrete remains indispensable in modern infrastructure, owing to its adaptability, strength, and cost-effectiveness. As the second most utilized material worldwide after water, concrete's role extends from buildings to bridges, dams, and other vital structures. The inherent properties of conventional concrete—comprising cement paste binding fine and coarse aggregates—deliver durability, economy, and installation ease. However, traditional concrete faces significant limitations, notably brittleness, low tensile and flexural strengths, and susceptibility to chemical, physical, and mechanical deterioration, especially under harsh environments or chemical attack. [1]

The primary binder in concrete, ordinary Portland cement (OPC), contributes substantially to global greenhouse gas emissions and resource depletion, accounting for about 7% of worldwide carbon dioxide emissions. The need to address environmental concerns, resource shortages, and escalating construction demands has spurred efforts to reduce OPC usage via supplementary cementitious materials (SCMs) and innovative additives. [11]

Recent advances in nanotechnology have enabled the use of materials such as graphene oxide to modify cement composites at the molecular level. GO, a functionalized derivative of graphene, boasts exceptional mechanical, electrical, thermal, and chemical properties. Its incorporation, even in minute quantities, can significantly reinforce concrete's microstructure, promoting improved hydration, reduced permeability, and enhanced durability—qualities critical for infrastructure longevity and efficiency. Experimental evidence shows GO's capacity to accelerate cement hydration at early ages, densify the interfacial transition zone between

aggregate and matrix, and reduce susceptibility to cracking and corrosion of rebar, thus extending the service life of concrete structures.^[1]

The attached thesis explores the synergistic effects of GO in cement systems, investigating variations employing different aggregate types (granite, sandstone, quartzite) and diverse water-cement ratios. The objectives include quantitatively assessing mechanical enhancements, benchmarking against Indian standards (IS-1199, IS-516, IS-5816), and optimizing GO dosage for sustainable, high-performance construction materials.

This review critically synthesizes these experimental and literature findings, providing a thematic analysis of GO's impact on cement composites and concrete. It aims to bridge gaps between laboratory research and practical applications, offering recommendations for future exploration in the quest for sustainable, high-performance concrete. [11]

LITERATURE REVIEW

Graphene—a single atomic layer of sp²-bonded carbon arranged in a hexagonal lattice—has gained immense interest due to its superior tensile strength (130 GPa), electrical conductivity, and immense surface area [Geim & Novoselov, 2007]. Its most widely used derivative in cement applications is graphene oxide (GO), synthesized via chemical oxidation (Hummers' method) of graphite, leading to functional groups (hydroxyl, epoxy, carboxyl) that enable dispersion into aqueous solutions and strong interaction with cement hydrate phases [Dreyer et al., 2010]. [1]

GO's high aspect ratio and hydrophilicity drive its ability to promote nucleation sites for cement hydration, accelerate early strength development, and refine the microstructure of calcium-silicate-hydrate (C-S-H) gels, resulting in mechanical and durability improvements [Chuah, 2014; Pan, 2015].

Historically, graphene has been isolated via mechanical and liquid-phase exfoliation, but large-scale production favors chemical exfoliation, despite some loss in conductivity and crystallinity [Yuan et al., 2011]. The presence of oxygen groups in GO increases its solubility in water,

overcoming agglomeration issues of pure graphene, and facilitating uniform dispersion within cement paste [Li et al., 2008].

Recent studies focus on optimizing GO concentrations (typically 0.03–0.1% by cement weight), preparation techniques, and dispersing agents to maximize mechanical benefits, while minimizing negative effects on workability. Modified Hummers' method, vacuum-assisted drying, and compatible polymer additives have been explored to facilitate GO blending and hydration activation. [Lai, 2015; Yang et al., 2017; Shen et al., 2019]

Kumar et al. (2007)

Aggregate mineralogy affects GO's effectiveness: granite aggregates maximize compressive and tensile gains, with quartzite also performing well, while porous sandstone yields smaller improvements. GO enables lower cement content and substitution with industrial by-products (fly ash, GGBS), decreasing carbon emissions and resource utilization, while potentially lowering construction costs. Enhanced corrosion resistance of steel reinforcement further extends structural lifespan.

Li et al. (2008)

The dispersibility challenges of graphene oxide (GO) have been addressed, with findings showing that its hydrophilicity and electrostatic repulsion can support better integration into cementitious systems. However, careful formulation is still required to prevent aggregation. Notably, many graphene derivatives—especially GO nanoparticles—tend to exhibit strong hydrophobic behavior, which further complicates their dispersion in aqueous environments. As a result, GO particles have a pronounced tendency to aggregate into irreversible clusters or even larger groups.

Haibo et al. (2009)

Graphene oxide (GO), synthesized using the modified Hummers' method, demonstrated high electrosorption capacity, highlighting its versatility for both structural and environmental applications. In this approach, graphene was prepared from graphite and evaluated as an electrosorbent. The results showed an electrosorption capacity of 1.85 mg/g. Furthermore,

graphene-like nanoflakes with comparatively large specific surface area were synthesized and applied in the capacitive deionization (CDI) process. At an initial sodium ion (Na⁺) concentration of 25 mg/L, the nanoflakes achieved a maximum sorption capacity of **23.18 µmol/g** under an applied potential.

Sisomphon et al. (2010)

Admixtures and fibers (including GO) have become key for improving rheology, strength, and durability, with nano-scale additives recognized for crack-bridging, matrix densification, and microstructural refinement. Due to its hydrophilicity and electrostatic repulsion, graphene oxide (GO) is more easily dissolved in aqueous media than in other forms of graphene derivatives; nonetheless, dispersing GO in cement-based materials has also proven to be difficult.

Tong (2016)

GO accelerates cement hydration early on; over time, its effect plateaus as hydration slows, making it particularly beneficial during initial curing and strength development.GO modulates microstructure, refines pore distribution, bridges cracks, and densifies the transition zone, slowing crack propagation and improving mechanical resilience under bending and tension.^[1]

Xiangyu et al. (2017)

GO's high specific surface area induces water absorption and retention, lowering fluidity and increasing viscosity in fresh mixes; proper dosage control is pivotal to balance workability and hardened properties.

Jianhua et al. (2019)

GO water dispersions were used to regulate cement hydration, increasing both permeation resistance and strength without compromising durability. Large-scale production with defect-free GO proved feasible for consistent high-quality results. disclosed a mix for graphene concrete, utilizing a graphene water dispersion to regulate cement hydration products, improving properties like strength, permeation resistance, and durability. The use of high-quality defect-free

Sanglakpam et al. (2020)

GO addition (0.1%) to recycled concrete aggregate produced mixes with mechanical and durability properties comparable to natural aggregate-based concrete, suggesting efficient resource use without sacrificing quality. explored the functionality of concrete with 100% recycled concrete aggregate (RCA) and synthesized graphene oxide (GO). The study found that the addition of 0.1% GO significantly improved mechanical and durability properties, making it comparable to concrete using natural aggregates.

Ganesh et al. (2022)

Laboratory-produced GO in mortar increased compressive, tensile, and flexural strengths, with optimal performance at 0.03% GO loading. Morphological analysis linked improvements to refined microstructure and hydration products. investigated graphene concrete mechanical properties and morphology. The study incorporated laboratory-produced graphene oxide (GO) into cement mortar, showing that GO improved compressive, tensile, and flexural strengths. The optimal GO percentage was found to be 0.03%, resulting in significant strength enhancements.

Shuai et al. (2023)

UHPC samples enriched with GO experienced about 24.9% higher fracture toughness at the interfacial transition zone (ITZ) and flexural strength enhancements of 14.7–13.9% in steel fiber-reinforced mixes. GO-induced C-S-H generation decreased ITZ porosity, strengthened matrix-fiber bonding, and promoted microstructure uniformity. The study revealed that GO induced calcium- silicate-hydrate generation, reducing ITZ porosity and enhancing microstructure homogenization. This led to a 24.9% increase in microscale fracture toughness in ITZ, improving the interface bonding between steel fibers and matrix. Consequently, straight steel fiber UHPC and hooked-end fiber UHPC exhibited increased macroscopic flexural strength by 14.7% and 13.9%, respectively.

Zeng et al. (2023)

The micromechanical performance of interfacial transition zones (ITZ) containing nanosheets has been examined, alongside the durability applications of graphene oxide (GO) in concrete. Studies highlight notable improvements in multifunctionality and extended service life. Furthermore, the review explored various methods for analyzing ITZ performance, while discussing the role of GO in smart and durable next-generation concretes. Particular emphasis was placed on the challenges and future prospects of incorporating nanosheets into cementitious systems to achieve enhanced performance and multifunctionality.

Qiang et al. (2023)

GO catalyzes cement hydration, optimizes pore structure, and enhances water molecule absorption, increasing overall matrix durability and environmental resistance. reviewed the catalytic and regulatory effects of GO oncement-based materials, emphasizing its impact on hydration characteristics, pore structure, and the internal interface. GO was found to absorb water molecules, promote cement particle dissolution, and optimize the pore structure, leading to enhanced durability and enhanced functionality of materials based on cement.

Ishrat et al. (2023)

GO's inclusion in recycled aggregate cement composites (GO-RA-CC) improved ITZ characteristics, hydration reactions, and overall durability; life cycle assessment revealed better environmental performance compared to traditional cement composites. conducted a bibliometric and keyword analysis to review research efforts on utilizing GO in recycled aggregate-based cement composites (GO-RA-CC). Results highlighted the positive impact of GO on mechanical and durability properties, with improved interfacial transition zones and increased hydration reactions. Investigation on life cycle assessments revealed better environmental performance compared to conventional cement composites.

Moetaz et al. (2023)

GO with ground granulated blast furnace slag (GGBS) improved acid and sulphate resistance, water absorption, mechanical strength, and chloride ion resistance in OPC concrete mixes. investigated the effects of graphene powder on concrete, showing increased acid and sulphate resistance, reduced water absorption, and enhanced mechanical properties. The combination of

graphene and GGBSresulted in improved overall durability and chloride ion resistance in ordinary Portland cement (OPC) concrete.

SUMMARY OF KEY FINDINGS

- Optimal GO addition (0.03–0.1% by cement weight) improves compressive strength (up to 52%), flexural strength (up to 21%), and split tensile strength (up to 40%). [1]
- GO refines microstructure, densifies the ITZ, and bridges cracks for mechanical and durability enhancements. [1]
- Aggregate type affects GO's efficacy: granite > quartzite > sandstone. [1]
- GO's use reduces workability and fluidity, necessitating careful supplementation with superplasticizers and water content management.^[1]
- GO incorporation supports sustainable construction practices by reducing OPC usage and improving service life.

DISCUSSION

The integration of graphene oxide in cement composites marks a significant advance in material science, with wide-ranging implications for both performance and sustainability. Experimental results consistently confirm that even low doses of GO dramatically enhance the core mechanical properties of concrete, particularly compressive and flexural strengths. These improvements are rooted in GO's capacity to facilitate C-S-H gel nucleation and growth, densify the matrix, and minimize porosity, thus contributing to higher strength and durability. [1] Aggregate mineralogy profoundly modulates GO's effectiveness. Granite aggregates, due to their density and mineral profile, promote optimal interfacial bonding with the GO-modified cement matrix, yielding maximum strength improvements. Quartzite, with its hardness and smooth surface, also benefits from GO's crack-bridging and densification effects, while more porous sandstone presents challenges in maintaining workability and achieving optimal strength gains. This highlights the importance of customizing mix compositions to both aggregate source and GO dosage. A notable tradeoff emerges between improved hardened properties and reduced workability of fresh concrete. GO's large specific surface area, while beneficial for matrix densification, results in water absorption and particle agglomeration, decreasing slump and fluidity. This necessitates careful addition of superplasticizers and water management during mix design to prevent undesirable stiffness and ensure proper compaction. [1]

From an environmental perspective, GO offers considerable advantages. By enabling substantial cement replacement with industrial by-products, it directly reduces the carbon footprint, energy consumption, and resource extraction associated with OPC manufacture. GO also enables superior corrosion protection for steel reinforcements, further extending infrastructure service life and lowering maintenance costs. These sustainability benefits position GO-admixed concrete as a key material for green, high-performance construction in resource-constrained settings. [1]

Research gaps remain, however. Most studies are confined to laboratory settings; there is limited empirical data on long-term durability, field performance, and effects under variable environmental conditions. The optimal threshold for GO dosage—beyond which mechanical gains plateau or dispersion issues emerge—is yet to be precisely determined. Comparative analyses with other nanomaterials are scarce, as is research on GO's influence on smart infrastructure components, such as self-sensing or thermally conductive concrete. [11]

In summary, GO's transformative potential is clear, but fully harnessing its benefits will require interdisciplinary research, careful optimization of mix designs, and real-world validation through field trials. Improved imaging and monitoring techniques—such as tomography and three-dimensional mapping—can further elucidate the nanoscale distribution and effects of GO, guiding future innovations in concrete technology. [11]

CONCLUSION

The reviewed evidence underscores that graphene oxide, even at low concentrations (0.03–0.1%), delivers substantial mechanical and durability enhancements in cement composites, supporting the development of high- and ultra-high-performance concrete. Key benefits include elevated compressive, flexural, and tensile strengths, pronounced matrix densification, improved bonding in the interfacial transition zone, and reduced susceptibility to cracking and corrosion. Aggregate selection further amplifies these effects, with granite and quartzite outperforming sandstone. [1]

GO's integration addresses longstanding challenges in conventional concrete, notably brittleness, low tensile strength, and limited durability under aggressive environmental

conditions. Combined with its capacity to lower cement requirements and utilize industrial byproducts, GO contributes to sustainability and reduces the environmental impact of construction.

Practical applications range from infrastructural elements demanding high strength and longevity (e.g., bridges, high-rise columns, pavements) to innovative uses in smart materials and self-sensing matrices. Nonetheless, optimal mix design and dispersion techniques must be carefully calibrated to balance improved hardened properties with acceptable workability.

Future research should focus on:

- Optimizing GO dosage to prevent diminishing returns and agglomeration,
- Expanding field trials and long-term monitoring of GO-enhanced concrete under real-world environmental conditions,
- Investigating the multi-scale distribution of GO within the matrix using advanced imaging,
- Comparing GO's performance with related nanomaterials (e.g., CNTs, nano-silica),
- Exploring new functional applications, such as electrically conductive or self-healing concrete. By building upon existing experimental and theoretical foundations, researchers and practitioners can leverage GO's exceptional properties for next-generation, sustainable concrete infrastructure suited to the demands of a changing global landscape. [1]

REFERENCES

- 1. Berntsson, L., et al. (1990). The adhesion between the paste and aggregate surface and its effect on concrete strength.
- 2. Samadi, A., et al. (2020). Global usage and adaptability of concrete in infrastructure.
- 3. Costa, A., & Ribeiro, D. (2020). Environmental impact of OPC production and global emissions.
- 4. Onaizi, S. (2021a). Resource depletion and environmental concerns in cement manufacturing.
- 5. Bharatkumar, B., et al. (2001). Characteristics and performance of high-performance concrete.
- 6. Ahmed, S., et al. (2017). Ultra-high strength and durability requirements in concrete.
- 7. ACI Committee 211.4R-93 (1996). Guidelines for ultra-high performance concrete.
- 8. Balaguru, P., & Chong, K. (2006). Nanotechnology and its mechanical benefits in cement.
- 9. Hanus, M., & Harris, J. (2013). Effects of metal oxide nanoparticles in cement composites.
- 10. Chuah, S., (2014); Pan, Z., (2015). Chemistry of cement and graphene oxide.

- 11. Babak, F., et al. (2014); Zhou, C., et al. (2013). Applications of graphene oxide in concrete.
- 12. Shuai, S., et al. (2023). Impact of GO on UHPC microstructure and fracture toughness.
- 13. Zeng, Z., et al. (2023). Multifunctional applications and micromechanical performance with GO nanosheets.
- 14. Qiang, Q., et al. (2023). Catalytic and regulatory effects of GO in cement hydration.
- 15. Ganesh, G., et al. (2022). Mechanical properties and morphology of GO-blended cement mortar.
- 16. Ishrat, I., et al. (2023). Life cycle assessment and environmental performance of GO-RA-CC.
- 17. Jianhua, J., et al. (2019). Regulation and optimization of cement hydration by GO dispersions.
- 18. Moetaz, M., et al. (2023). Durability enhancements using GO and GGBS in OPC concrete.
- 19. Sanglakpam, S., et al. (2020). GO additions in recycled concrete aggregate-based mixes.
- 20. Haibo, H., et al. (2009). GO as an electrosorbent in capacitive deionization.
- 21. Li, L., et al. (2008). Dispersibility challenges and solutions for GO in cement.
- 22. Sisomphon, K., et al. (2010); Feng, F., et al. (2002); Kim, K., et al. (2010). Role of admixtures and nano-additives in enhancing cement properties.
- 23. Xiangyu, X., et al. (2017); Eric, E., et al. (2007); Asghar, A., et al. (2015); Chao, C., et al. (2015). Influence of GO on fluidity and workability.
- 24. Tong, T. (2016); Zhang, Z., et al. (2020); Yu, Y., et al. (2020); Aitcin, P., et al. (2004). Earlyage effects and economic impacts of GO addition.