

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 34

Role of Node.js in Modern Web Application Development

Salil Bhatnagar
1
 and Ashish Pandey

2

1
 Chameli Devi Group of Institutions, Indore

Salilbhatnagar1@gmail.com
2
Chameli Devi Group of Institutions, Indore

Ashishpandey0731@gmail.com

Abstract

Node.js is a cutting-edge open-source web platform that has gained significant popularity. Built on

Google Chrome's V8 JavaScript runtime engine, Node.js enables developers to create network

applications and servers with minimal code. It utilizes an asynchronous programming model based on

non-blocking I/O and a single-threaded event loop, eliminating concerns about race conditions and

synchronization issues common in concurrent multi-user programming. The research paper portrays

the basics of the platform.

Key Words: JavaScript, Node.js, event driven, single- threaded, non-blocking,

asynchronous

 1. Introduction

Node.js is a versatile, open-source, and cross-platform JavaScript runtime environment that

has revolutionized modern development. It empowers developers to use JavaScript not only

in the browser but also on the server side, making it a powerful tool for a wide range of

applications.

Powered by the V8 JavaScript engine—the same core used in Google Chrome—Node.js

operates outside the browser, delivering exceptional performance. Unlike traditional models

that spawn a new thread for every request, a Node.js application runs in a single process. It

relies on asynchronous I/O primitives, enabling non-blocking operations by default. Blocking

behavior is rare in Node.js, making it a highly efficient choice for modern applications.

When performing I/O tasks like reading from a network, database, or filesystem, Node.js

avoids wasting CPU cycles by not blocking the thread. Instead, it resumes operations only

when the response is ready. This approach allows Node.js to handle thousands of concurrent

connections with a single server, eliminating the complexities of thread concurrency and

reducing potential bugs.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 35

A key advantage of Node.js is its seamless integration of frontend and backend development.

JavaScript developers can now write both client-side and server-side code without learning an

entirely new language, streamlining the development process.

 Node.js supports the latest ECMAScript standards, allowing developers to take full

advantage of modern JavaScript features. Since Node.js runs independently of browser

updates, developers can decide which ECMAScript version to use by selecting the

appropriate Node.js version or enabling experimental features with specific flags.

An Example Node.js Application

The most common example Hello World of Node.js is a web server:

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

To execute this code snippet, save it as a server.js file and run it using the command node

server.js in your terminal.

The script begins by including the Node.js http module, which is part of Node.js's robust

standard library offering excellent support for networking.

The createServer() method from the http module creates and returns a new HTTP server

instance. This server is then configured to listen on a specified hostname and port. Once the

server starts successfully, a callback function is triggered to notify that the server is running.

https://nodejs.org/en/learn/getting-started/introduction-to-nodejs#an-example-nodejs-application

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 36

When the server receives a request, the request event is fired, providing two key objects:

a) request: An http.IncomingMessage object containing details about the incoming HTTP

request, such as headers and data (though these are not used in this simple example).

b) response: An http.ServerResponse object used to send data back to the client.

These two objects are crucial for managing the HTTP request-response cycle. The request

object provides access to the incoming request's details, while the response object is used to

craft and send the response to the caller.

In this case with:

res.statusCode = 200;

we set the statusCode property to 200, to indicate a successful response.

We set the Content-Type header:

res.setHeader('Content-Type', 'text/plain');

 and we close the response, adding the content as an argument to end():

res.end('Hello World\n'); [1]

2. Node.js Internal Structure

 V8: V8 is an open-source project developed by Google designed to execute JavaScript code outside

the browser environment. It provides access to Node.js's underlying networking capabilities and plays

a key role in managing concurrency—a core feature of Node.js. Approximately 70% of V8's codebase

is written in C++, while the remaining 30% is written in JavaScript.

.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 37

Fig-1:Node.jsinternalstructure-I

 libuv: libuv is an abstraction layer built on top of libraries like c-ares (for DNS), IOCP (for

Windows asynchronous I/O), libeio, and libev. It handles and manages all input-output operations

and events within the event loop. Simply put, libuv enables your JavaScript code to perform I/O

operations such as networking, file handling, and more. It is the backbone for file system

operations and TCP-level connectivity, and the library itself is entirely written in C++.

As a JavaScript developer, you write your code in JavaScript, expecting it to compile and execute

seamlessly. Node.js acts as the interface between your JavaScript code and the underlying open-

source components (like V8 and libuv), which are implemented in JavaScript and C++. This

abstraction means you don't need to directly interact with the C++ code. Instead, Node.js provides

a unified API, allowing developers to use high-level JavaScript methods that internally relate to

the C++ code running on your computer, ensuring smooth execution of your JavaScript programs.

Refer to Fig-2 for a detailed overview.

Fig-2:Node.jsinternalstructure-II

The library modules in Node.js, such as fs, http, path, and crypto, provide a consistent and easy-

to-use API. These APIs ultimately interface with functionalities that are implemented within

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 38

the libuv project. As a developer, you interact with these modules using JavaScript functions,

which internally invoke the underlying libuv project. You don't need to worry about the C++

code or the internal workings of libuv—Node.js and libuv handle those complexities for you.

 3. Module System

JavaScript, by specification, does not provide a built-in API for managing module dependencies and

isolation. Consequently, including multiple modules in a project traditionally involved exposing

global variables. For instance, the jQuery module can be added to an HTML document by including

the following line in the `<head>` tag:

`<script src="https://code.jquery.com/jquery-1.6.1.js"></script>`

The module is then accessed via the global `jQuery` object. However, this approach can lead to

global namespace pollution and potential naming collisions.

To address this issue, Node.js introduced a modular system that avoids relying on global variables.

Developers can create their own modules or utilize core and third-party modules. Node.js modules

act as plugins, add-ons, and extensions to simplify the development process. Each Node module

exposes a public API (Application Programming Interface) that can be accessed after importing the

module into the current script. Node modules are categorized into local modules, core modules,

and third-party modules.

NPM – The Node Package Manager

Node.js comes with built-in support for package management via NPM, a tool included by default

with every Node.js installation. NPM modules function similarly to Ruby Gems, offering a

collection of publicly available, reusable components. These modules can be easily installed from a

web-based repository and include features for version and dependency management. A full list of

NPM packages is available on the NPM website or through the NPM CLI, which is installed

alongside Node.js. The ecosystem is open to everyone, allowing developers to publish their own

modules to the repository.

Popular NPM Modules

Here are some of the most widely used NPM modules:

express: A Sinatra-inspired web development framework for Node.js, and the de facto standard for

most Node.js applications.

connect: An extensible HTTP server framework for Node.js that provides a collection of high-

performance middleware plugins.

socket.io and sockjs: Server-side components of two of the most popular WebSocket libraries

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 39

available today.

mongodb and mongojs: APIs for interacting with MongoDB databases in Node.js.

bluebird: A feature-rich Promises/A+ implementation with excellent performance.

moment: A JavaScript library for parsing, validating, manipulating, and formatting dates.

This list is by no means exhaustive. The NPM ecosystem hosts countless valuable packages,

accessible to developers worldwide, and continues to grow daily.

4. KeyFeaturesofNode.js

Non-blocking I/O

The Node.js standard library provides asynchronous, non-blocking I/O methods that accept

callback functions. Some methods also have synchronous (blocking) counterparts, whose

names typically end with Sync.

Example of Blocking I/O:

 const fs = require('fs');

 const content = fs.readFileSync('/file.txt'); // Blocks here until the file is fully read

 console.log(content);

 moreWork(); // This runs only after console.log

Example of Non-blocking I/O:

 const fs = require('fs');

 fs.readFile('/file.txt', (err, content) =>

 {

 if (err) throw err;

 console.log(content);

 });

 moreWork(); // This runs before console.log

In the first example, console.log executes before moreWork() because fs.readFileSync blocks

execution. In contrast, in the second example, fs.readFile() is non-blocking, allowing JavaScript

to continue executing moreWork() without waiting for the file to be read. This non-blocking

approach is a fundamental design choice in Node.js that enables higher throughput.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 40

Single-Threaded Event Loop

The Node.js platform does not follow the traditional Request/Response Multi-Threaded

Stateless Model. Instead, it adopts a Single-Threaded Event Loop Model based on

JavaScript's event-driven architecture and callback mechanisms.

Thanks to this architecture, Node.js efficiently handles multiple concurrent client requests.

The Event Loop is the core of the Node.js processing model. It enables the platform to

manage non-blocking operations and asynchronous tasks, making it highly effective for

applications requiring high concurrency and real-time processing.

Fig-3:Node.jsApplication/Server

Single-Threaded Event Loop Model: Processing Steps

a) User Request:

A user sends a request to the server.

b) Thread Pool:

The Node.js web server maintains a limited thread pool to handle client requests requiring

blocking operations.

c) Event Queue:

Incoming requests are placed into an "Event Queue."

d) Event Loop:

The Node.js server contains a core component called the "Event Loop." This loop

continuously checks for new requests in the Event Queue and processes them. It is called

an "Event Loop" because it uses an infinite loop to receive and handle requests.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 41

e) Pseudo-code for understanding:

public class EventLoop {

 while (true) {

 if (EventQueue receives a JavaScript function call) {

 ClientRequest request = EventQueue.getClientRequest();

 if (request requires Blocking IO or extensive computation) {

 Assign request to Thread T1;

 } else {

 Process and prepare response;

 }

 }

 }

}

f) Single Thread:

The Event Loop operates on a single thread and is the core of the Node.js processing

model.

g) Waiting for Requests:

o If no requests are in the Event Queue, the Event Loop waits indefinitely for incoming

requests.

o If requests are present, the Event Loop retrieves one request and starts processing it.

h) Non-blocking Requests:

o If the request does not require any blocking I/O operations, the Event Loop processes it

directly, prepares the response, and sends it back to the client.

i) Blocking Requests:

o For requests requiring blocking I/O operations (e.g., database access, file system

interactions, or external services), the Event Loop follows a different approach:

 Check Thread Pool: It checks for available threads in the internal thread pool.

 Assign Thread: Assigns the request to an available thread.

 Thread Execution: The thread processes the request, performs the blocking I/O

operation, prepares the response, and returns it to the Event Loop.

j) Response Handling:

The Event Loop sends the final response back to the respective client.

o This efficient model allows Node.js to handle multiple concurrent client requests

effectively, even with a single-threaded Event Loop.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 42

 5. Reasons for why Node.js used widely by Modern Web Developers:

Google V8 JavaScript Engine

Node.js uses the Google V8 engine to execute JavaScript code. Unlike other JavaScript

interpreters, the V8 engine compiles JavaScript into native machine code. This enables the

runtime environment to significantly enhance the performance of web server applications by

executing JavaScript more quickly and efficiently.

Asynchronous I/O Operations

Node.js handles all I/O operations asynchronously using a single-threaded event loop. This

advanced approach allows Node.js applications to send asynchronous tasks to the event loop

with a callback function. While the async task is being processed, the application continues

executing the remaining code. Once the operation completes, the event loop returns to the

task and executes the callback function. This method not only reduces memory consumption

but also allows Node.js to efficiently manage a large number of concurrent connections.

Developers can use this runtime environment for common tasks like file system operations,

network connections, and database read/write operations.

Robust Tooling

Node.js developers benefit from a reliable package manager like npm. npm is fast, consistent,

and robust, and it simplifies the process of managing project dependencies while preventing

version conflicts. Additionally, developers can leverage powerful file streaming tools like

Broccoli, Gulp, and Brunch, as well as popular task runners like Grunt.

Real-Time and Multi-User Applications

In addition to supporting responsive web design, developers today often need to create real-

time and multi-user web applications. Node.js makes it easier to develop complex

applications such as gaming, chat, and communication tools. With WebSocket protocols,

developers can build real-time applications where data is pushed from the server to the client

more efficiently, without the overhead of HTTP. Additionally, the event loop feature of

Node.js enables the creation of multi-user applications that handle numerous simultaneous

connections.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 43

Facilitating File Streaming

Web developers can take advantage of Node.js’s efficient I/O capabilities to speed up file

streaming from the file system. By using the runtime to manage read/write streams over

HTTP and WebSockets, developers can reduce processing times for tasks like transcoding

audio or video. For instance, a programmer can stream data directly from the web server to a

browser via WebSockets, enabling real-time display of output.

Popularity of JavaScript

JavaScript has been an integral part of web development since the early days of the web. It

gained further prominence with the advent of AJAX and continues to be the go-to language

for client-side scripting. The familiarity of JavaScript and Node.js’s adherence to the

language for both client-side and server-side development has driven widespread adoption.

By leveraging JavaScript’s best features and nurturing a vibrant community, Node.js has

grown into a popular platform with a continually expanding user base.

Single Codebase for Frontend and Backend

Node.js allows developers to write both client-side and server-side code in JavaScript,

bridging the gap between frontend and backend development. This enables programmers to

use a single language for building both the frontend and backend of web applications,

streamlining development and reducing the complexity of managing separate codebases.

Fig-4: JavaScriptend-to-end

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 44

6.Why Are Major Companies Choosing Node.js?

PayPal

PayPal is a leading global platform for online transactions, allowing users to send money and

conduct business in more than 100 currencies. By 2015, the company had over 184 million

active customer accounts. PayPal leverages Node.js to develop the client-side of its web

applications.

Why Node.js?

Jeff Harrel, Senior Director of Payments Products and Engineering at PayPal, explains that

Node.js helps bridge the gap between the browser and server by enabling both to be built

using JavaScript. This approach unifies development teams, improving their ability to meet

client needs across the technology stack.

Results:

By adopting Node.js, PayPal developed its application twice as fast, using fewer developers.

The new system required 33% fewer lines of code and 40% fewer files than its previous Java-

based solution.

LinkedIn

LinkedIn, a professional networking platform founded in 2002 in Mountain View, California,

serves over 400 million users across 200+ countries. The company utilizes Node.js to handle

the server-side operations of its mobile application.

Why Node.js?

According to Kiran Prasad, LinkedIn’s Mobile Development Lead, the decision to use

Node.js was based on two key factors: scalability and its efficiency in interacting with other

services.

Results:

The Node.js-based mobile app is up to 10 times faster than its predecessor built with Ruby on

Rails. Additionally, it significantly reduces server resource usage, bringing it down from 30

servers to just 3. The development process also became much more efficient.

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 45

Yahoo

Yahoo, a global technology company, offers a web portal, search engine, and various online

services, attracting more than 500 million users monthly in over 30 languages.

Why Node.js?

Eric Ferraiuolo, Principal Software Engineer at Yahoo, emphasizes that Node.js provides

scalability, and every feature transitioned to Node.js has demonstrated improved

performance.

Results:

The adoption of Node.js has revolutionized Yahoo’s frontend development culture,

contributing to the efficiency of multiple Yahoo websites.

Netflix

Netflix, the world’s largest streaming service, provides movies and TV shows in over 190

countries. As of April 2016, it had more than 81 million subscribers, including 46 million in

the U.S. Netflix has built its entire user interface using Node.js and intends to extend its use

to other parts of its infrastructure.

Why Node.js?

The Netflix team chose Node.js to create applications that are lightweight, modular, and fast.

This shift has reduced the startup time of their applications by 70%.

GoDaddy

GoDaddy, a publicly traded company specializing in domain registration and web hosting,

manages over 61 million domains and serves more than 13 million customers as of January

2016. The company migrated its entire backend system to an open-source Node.js

framework.

Why Node.js?

Stephen Commisso, Senior Software Developer at GoDaddy, cites the ability to build high-

quality applications, deploy new features quickly, write efficient tests, and leverage NPM as

the main advantages of using Node.js.

Results:

Antonio Silveira, Vice President of Engineering at GoDaddy, reports that the company now

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 46

operates with 10 times fewer servers while maintaining the same workload. Additionally,

Time To First Byte (TTFB) has improved significantly, dropping from approximately 60ms

to just 12ms. Performance has become a key differentiator, particularly in comparison to

Google’s search results.

According to Stack Overflow survey 2019 the Node.jsis the most commonly used and most

wanted technology [4] give a look in Fig-5 and Fig-6.

Fig-5: Applications of Node.js

Fig-6: Market capture by Node.js

International Journal of Innovations in Research | ISSN: 3048-9369 (Online)

www.ijir.info | Volume 1 (Issue 2) | October – December, 2024 Page 47

Potential application areas of Node.js

 Media

 Paymentgateways

 Ecommerce

 Socialmedia

 Enterprisewebapps

 Backend/API for mobile apps

 7. Conclusion

Node.js has revolutionized the usability of JavaScript, turning it into a comprehensive

programming language. It extends JavaScript beyond the browser to server-side scripting,

offering a powerful runtime environment. With a vast library of free, useful modules

accessible via the built-in tool NPM, Node.js provides seamless functionality. By leveraging

event-driven I/O and non-blocking asynchronous programming, Node.js ensures lightweight

and efficient performance. Businesses adopting Node.js can benefit from reduced server

requirements, fewer developers, and faster page load times.

References

[1] https://Node.js.org/en/docs

[2] Node.jsinActionbyMikeCantelon,MarcHarter,T.J. Holowaychuk, Nathan Rajlich.

[3] https://brainhub.eu/blog/9-famous-apps-using-node-js

[4] https://insights.stackoverflow.com/survey/2019

[5] https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop

[6] https://www.toptal.com/nodejs/why-the-hell-would- i-use-node-js

[7] https://nodejs.org/api

[8] A Comparative Analysis of Node.js (Server-Side Java Script) Nimesh Chhetri.

https://nodejs.org/en/docs/
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://insights.stackoverflow.com/survey/2019
https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop
https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop
http://www.toptal.com/nodejs/why-the-hell-would-
https://nodejs.org/api/

